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Preface 



The California Energy Commission’s Public Interest Energy Research (PIER) Program supports 
public interest energy research and development that will help improve the quality of life in 
California by bringing environmentally safe, affordable, and reliable energy services and 
products to the marketplace. 

The PIER Program conducts public interest research, development, and demonstration (RD&D) 
projects to benefit California. 

The PIER Program strives to conduct the most promising public interest energy research by 
partnering with RD&D entities, including individuals, businesses, utilities, and public or private 
research institutions. 

• PIER funding efforts are focused on the following RD&D program areas: 
• Buildings End Use Energy Efficiency 
• Energy Innovations Small Grants 
• Energy Related Environmental Research 
• Energy Systems Integration 
• Environmentally Preferred Advanced Generation 
• Industrial/Agricultural/Water End Use Energy Efficiency 
• Renewable Energy Technologies 
• Transportation 

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California is the final 
report for the Natural Gas Observations from California project contract number 500-06-006 
conducted by the Lawrence Berkeley National Laboratory. The information from this project 
contributes to PIER’s Energy Related Environmental Research Program. 

For more information about the PIER Program, please visit the Energy Commission’s website at 
www.energy.ca.gov/research/ or contact the Energy Commission at 916-654-4878. 
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Executive Summary  

Introduction 
Atmospheric methane plays an essential role in Earth’s climate. CH4 currently accounts for 
about ½ of the change in non-CO2 radiative GHG forcing from pre-industrial times to the 
present (Hofman et al., 2006).  Consequently, reduction in anthropogenic emissions of CH4 and 
other non-CO2 GHGs may be an important component of an initial strategy for avoiding the 
most severe impacts of global warming (Hansen et al., 1998; Hansen, 2004; Shindell et al., 
2005). In California, CH4 contributes approximately 6 % of total CO2 equivalent GHG emissions 
(CARB, 2007). Now that California has passed Assembly Bill 32, careful accounting of current 
CH4 emissions and of their future reductions is essential. Current inventory and model-based 
estimates of CH4 emissions are uncertain because many of the factors controlling emissions are 
poorly quantified. Atmospheric measurements and inverse modeling may provide an 
independent method to quantify local to regional CH4 emissions from California. 

Purpose 
The purpose of the following research is to provide California with the information necessary to 
plan a network for quantitative estimation of regional emissions of non-CO2 GHGs. 

Project Goals and Objectives 
The goals of this project are to 1) design and implement a baseline program to monitor 
atmospheric concentrations of CH4 and other GHGs in California, and (2) develop the basic 
information needed for the future deployment of more advanced and complete monitoring 
system. To accomplish these goals, the authors conducted research with the following 
objectives: 

Key results of this project include: 

Identify observing stations for atmospheric concentration measurements of non-CO2 GHGs in 
California.  

Implement trace gas concentration measurements at a subset of the identified tower stations 
and perform quality control and data archiving for measured data.  

Perform a preliminary analysis with the data to determine the desirability of deploying a more 
sophisticated and spatially complete monitoring system.  

 Key Results 

• Estimated CH4 emissions from inventories exhibit high spatial variability due to the 
patchy distribution of urban and rural sources. 

• Predicted atmospheric CH4 mixing ratio signals indicate that measurements be readily 
measurable signals at many locations in California. 

• Measurements of CH4, N2O, and other GHG gases, initiated at two tower sites Central 
California, regularly exceed values expected for marine background air, demonstrating 
that emissions from within California are measurable. 



• Preliminary mixing model estimates of CH4 and N2O fluxes, obtained using 222Rn as a 
“known” tracer, yield mean surface fluxes reasonably consistent with the emission 
inventories. 

• Revised or posterior estimates of CH4 surface fluxes, obtained with an atmospheric 
inverse model, suggest that CH4 emissions from livestock in the Central Valley may be 
higher than the a priori emission inventory, but consistent with results of recent research 
on livestock CH4 emissions. 

• A pseudo-data modeling experiment shows that while the two initial towers are able to 
quantify CH4 emissions from a portion of Central California, additional measurement 
sites in other regions of California are required to accurately quantify California’s total 
CH4 emissions. 

Project Recommendations 
The recommendations resulting from the research conducted in this project are to: 

Estimate and reduce errors in the transport model used to estimate GHG emissions from tower 
observations.  This work should include model-measurement comparisons of wind velocities 
and mixed layer heights using data from profilers and other trace gases (e.g., 222Rn). 

Develop and maintain the capability for the long-term GHG measurements necessary to detect 
variations and the trends in spatial patterns, seasonal and inter-annual cycles of GHG mixing 
ratios, and underlying emissions. 

Evaluate the potential value of more intensive N2O and initial halocarbon measurements at 
tower sites in California to quantify regional emissions of these species using both 222Rn mixing 
model and atmospheric inverse model methods. 

Investigate whether some combination of stable and radiocarbon isotopic measurements of CH4 
would provide effective separation of the multiple sources of CH4 emitted from California.  

Initiate GHG measurements at additional strategic locations in California to establish a 
statewide GHG measurement network as well as beginning work to synthesize GHG 
measurements from aircraft and satellite platforms. 

Anticipated Benefits for California 
This work benefits California utility ratepayers by identifying the non-CO2 GHG emissions from 
California that contribute to global warming. These results set the stage for verifying progress on 
controlling GHG emissions. This project addresses state and national needs for reliable 
quantification of terrestrial sources and sinks of carbon cycle gases. Ultimately, California 
ratepayers will benefit from more-informed greenhouse gas policies developed by California 
decision makers.  



1.0 Introduction 

1.1. Background and Overview 
1.1.1. CH4 and other non-CO2 Greenhouse Gases 
Changes in atmospheric methane play an essential role in Earth’s climate. CH4 is now 
associated with a direct radiative forcing of ~ 0.48   (IPCC, 2007) and an indirect radiative 
forcing of ~0.13   (Lelieveld et al. 1998), which accounts for about ½ of the non-CO2 radiative 
forcing (0.98 W m-2 in 2004) (Hofman et al., 2006) and about ¼ of the total radiative forcing 
(2.64 W m-2 from IPCC 2007) from all greenhouse gases (GHGs) in term of changes from pre-
industrial times to the present.  It has been argued that reducing anthropogenic emissions of 
methane may be an important component of an initial strategy for avoiding the most severe 
impacts of global warming (Hansen et al., 1998; Hansen, 2004; Shindell et al., 2005). In 
particular, reduction of anthropogenic methane emissions may be possible (e.g., improving CH4 
recovery from landfills and waste treatment, reducing industrial emissions, and improving 
agricultural practices) (Harriss, 1994). In view of methane’s role in the climate system, increased 
attention has been brought recently to assessing CH4 sources (Houweling et al., 2006, Gimson 
and Uliasz 2003, Miller et al. 2007, Kort et al. 2008) 

In California, total 2004 GHG emissions were approximately 480 MMT CO2 equivalent, with 
CH4 contributing approximately 6 % (CARB, 2007).  Now that California has passed Assembly 
Bill 32, which requires that greenhouse gases emissions be reduced to 1990 levels by 2020, 
careful accounting of current CH4 emissions and of their future reductions is essential. 
Unfortunately, current inventory and model-based estimates of CH4 emissions are uncertain 
because many of the factors controlling emissions are poorly quantified. Atmospheric 
measurements and inverse modeling may provide an independent method to quantify local to 
regional CH4 emissions from California. 

1.1.2. Atmospheric Inverse Methods 
Atmospheric inverse methods to estimate the surface CH4 fluxes from in-situ and remotely 
sensed CH4 mixing ratio measurements and modeled wind fields have been widely applied at 
both global and regional scales (Hein et al., 1997; Houweling et al., 1999; Vermeulen et al., 1999; 
Bergamaschi et al., 2000; Dentener et al., 2003; Gimson and Uliasz, 2003; Manning et al., 2003; 
Mikaloff Fletcher et al., 2004a, b; Bergamaschi et al., 2005; Chen and Prinn, 2006, Bergamaschi 
et al., 2007; Kort et al., 2008). In general, the components of atmospheric inverse emission 
estimates are CH4 mixing ratio measurements, an atmospheric transport model (including 
chemistry for global simulations), in some cases a priori estimates for CH4 emissions and sinks 
or their correlation structure, and a statistical technique to minimize differences between 
measured and predicted CH4 mixing ratios. To estimate CH4 emissions and their associated 
uncertainties, errors from each of these components should be accounted for and formally 
propagated through the inversion process.  In this study, the authors employ an approach 
originally developed to estimate regional CO2 emissions (Gerbig et al., 2003 a,b) that combines 
calculation of surface footprints (Lin et al., 2004) with procedures to estimate transport model 
uncertainty (Lin et al., 2005; Lin and Gerbig, 2005) using the Stochastic Time-Inverted 
Lagrangian Transport (STILT) model. Of particular relevance to our work, Kort et al. (2008) 
recently used observations of CH4 and N2O from an airborne platform in combination with 



STILT to infer CH4 and N2O emissions from the continental interior of North America in May-
June 2003. Our study also uses STILT, but applies it to a smaller model domain at finer spatial 
and temporal resolutions, taking advantage of unique computational benefits offered by the 
Lagrangian approach.  

1.1.3. Project Goal and Objectives 
The goals of this project are to (1) design and implement a baseline program to monitor 
atmospheric concentrations of CH4 and other GHGs in California, and (2) develop the basic 
information needed for the future deployment of more advanced and complete monitoring 
system. To accomplish the project goals, the authors conducted a project with the following 
objectives: 

Identify observing stations for atmospheric concentration measurements of non-CO2 GHGs in 
California. 

Implement trace gas concentration measurements at a subset of the identified tower stations 
and perform quality control and data archiving for measured data. 

Perform a preliminary analysis with the data to determine the desirability of the deployment of 
a more sophisticated and spatially complete monitoring system. 

1.1.4. Report Organization 
This report is broken into the following three sections.  Section 2 describes the project 
approaches taken to identifying measurement stations (Section 2.1), measurement of CH4 and 
other GHGs (Section 2.2); preliminary estimates of CH4 emissions from Central California 
(Section 2.3); and design of an enhanced monitoring network to estimate total CH4 emissions 
from California (Section 2.4).  Section 3 then describes the results, of the each of the efforts 
described in section 2 above. Finally, section 4 presents conclusions and recommendations for 
further research. 

2.0 Approach 

2.1. Identification of Measurement Stations 
2.1.1. Inventory Estimates of CH4, N2O and 222Rn Emissions 
The authors used two methods to estimate CH4 emissions.  As a base-case, they used the North 
American maps of total anthropogenic CH4 from the EDGAR 3.2 model with 1 x 1 degree 
spatial resolution (Olivier et al. 2005). To provide finer spatial resolution inside California, they 
also estimated California CH4 emissions separately for six sources sectors: landfills (LF), 
livestock (LS), natural gas production and use (NG), petroleum refining (PL), crop agriculture 
(CP), and wetlands (WL). CH4 emissions from landfills were estimated by the California Air 
Resources board using IPCC methods (IPCC, 2006) driven by landfill specific waste application 
statistics from the CA Waste Management Board (e.g., Carr, 2004) and site-specific estimates 
of CH4 recovery.  CH4 from livestock was estimated using USDA county level animal stocking 
densities (Census 2002) and animal specific emission factors for dairy and beef cattle 
separately (Franco, 2002). CH4 from natural gas production and use and from petroleum 
refining activities were estimated as the difference of total minus reactive hydrocarbon 
emissions estimated from the CARB emission criteria pollutant emission inventory for those 



source sectors (http://www.arb.ca.gov/app/emsinv/fcemssumcat2006.php). CH4 emissions 
from crop agriculture were assumed to follow emissions from the DNDC model for an average 
climate year with high irrigation as described by Salas et al. (2006).  CH4 emissions from 
wetlands in California were assumed to follow the NASA-CASA estimates from Potter et al. 
(2006).  Although some of these sources are expected to vary on a seasonal basis, they do not 
incorporate temporal variation in current study, which may cause the a priori emissions to be 
slightly overestimated or underestimated.   

For nitrous oxide (N2O), soil fluxes from crop agriculture were assumed to follow emissions 
from the DNDC model for an average climate year with high irrigation as described by Salas et 
al. (2006). Other sources were not considered in this preliminary estimate, though total N2O 
emissions from internal combustion engines are estimated to be about 2/3 those from agriculture 
in California (Bemis, 2006), but presumably with a spatial distribution heavily weighted to 
urban regions with high motor vehicle use. 

Radon (222Rn), soil fluxes were estimated using a model generously provided by Segvary (private 
communication). The model, which used a constant linear proportionality between soil radon 
flux and surface gamma ray activity, was calibrated using soil radon flux measurements at three 
sites in northern Europe (Szegvary et al., 2007). Maps of soil radon flux for California were 
generated using the same coefficient applied to surface 238U concentrations estimated from 
aircraft gamma ray surveys (Duval et al., 1989). Given than the estimated radon fluxes are 
significantly lower than the value of 1 atom cm-2 s-1 commonly assumed in previous work (e.g., 
Biraud et al., 2000), there remains some question as to whether this scaling is appropriate and 
suggests that some measurements of soil radon flux should be performed. 

2.1.2. Predicted maps of time varying CH4, and 222Rn mixing ratios 
The authors used a previously developed, tested, and applied coupled atmosphere and land-
surface model to estimate atmospheric CH4, CO2, and N2O concentrations. This modeling 
framework couples MM5, LSM1, and emission fields so that interactions between the land-
surface and atmosphere are fully interactive. MM5 (Grell et al., 1995) is a nonhydrostatic, 
terrain-following sigma-coordinate mesoscale meteorological model used in weather forecasting 
and in studies of atmospheric dynamics, surface and atmosphere coupling, and pollutant 
dispersion. The model has been applied in many studies in a variety of terrains, including areas 
of complex topography and heterogeneous land-cover (for a partial list: 
http://www.mmm.ucar.edu/mm5/Publications/mm5-papers.html). The following physics 
packages were used for the simulations shown here: Grell convection scheme, simple ice 
microphysics, MRF planetary boundary layer (PBL) scheme, and the CCM2 radiation package. 
The MRF PBL scheme (Hong and Pan, 1996) is a high-resolution PBL transport model that 
includes both local and non-local vertical transport. The inert tracer model follows the current 
MM5 transport calculations for water vapor. They tested the numerical solution of the tracer 
transport predictions and successfully compared predicted and measured CO2 mixing ratios at 
the Trinidad Head station (located on the northern California coast) (Riley et al., 2005), against 
data from the FIFE campaign (Cooley et al.), and against 14C measurements in California (Riley 
et al. 2008). 

LSM1 (Bonan, 1996) is a “big-leaf” (e.g., Dickinson et al. (1986), Sellers et al. (1996)) land-
surface model that simulates CO2, H2O, and energy fluxes between ecosystems and the 



atmosphere. Modules are included that simulate aboveground fluxes of radiation, momentum, 
sensible heat, and latent heat; belowground energy and water fluxes, and coupled CO2 and H2O 
exchange between soil, plants, and the atmosphere. Twenty-eight land surface types, 
comprising varying fractional covers of thirteen plant types, are simulated in the model. Soil 
hydraulic characteristics are determined from soil texture. LSM1 has been tested in a range of 
ecosystems at the site level (e.g., Bonan et al., 1997; Bonan et al., 1995; and Riley et al., 2003). 
Cooley et al. (2005) described the integration of LSM1 with MM5 and demonstrated that the 
model accurately predicted surface latent, sensible, and ground heat fluxes; near-surface air 
temperatures; and soil moisture and temperature by comparing model simulations with data 
collected during the FIFE campaign (Betts and Ball, 1998).  

The authors used the standard initialization procedure for MM5v3.5, which applies first-guess 
and boundary condition fields interpolated from the NOAA National Center for Environmental 
Prediction (NCEP) reanalysis data (Kalnay et al., 1996; Kistler et al., 2001) to the outer 
computational grid. The model was run with a single domain with horizontal resolution of 36 
km and 18 vertical sigma layers between the surface and 5000 Pa; the time step used was 108 s, 
and output was generated every two hours. A second, high-resolution nest centered on the 
Walnut Grove Tower was also run at 6 km horizontal resolution and 33 vertical sigma layers. 
They simulated four months that spanned the annual cycle between October 2007 and July 
2008.  

2.1.3. Candidate Measurement Stations 
Candidate measurement stations were identified from the combination of inspection of the 
predicted CH4 mixing ratio maps and consideration of available communications towers 
included in the US Federal Communication Commission listings (FCC). After identifying a larger 
set of towers, the authors contacted individual tower operators and found two towers for 
initial GHG measurements (see below).  A larger list containing the two initial measurement sites 
and five additional towers was also constructed to investigate the potential for a more 
complete measurement network. 

2.2. Measurement of CH4 and other gases 
2.2.1. Measurements 
Mixing Ratio Measurements at Towers 
The authors initiated GHG measurements at a tower near Walnut Grove, CA (121.491 °W, 
38.265 °N, henceforth WGC), and a tower on Mount Sutro (122.4517 °W, 37.7553 °N) above 
San Francisco beginning in September 2007. Flask samples were collected at both WGC (at 91m) 
and STR (at 232m) twice daily (1000 and 2200 GMT), shipped to NOAA-ESRL, and analyzed 
for CO2, CH4, N2O and supporting tracer species (CO, SF6, H2). 

At Walnut Grove (WGC), continuous measurements include CO2, CH4, and CO at 30, 91 and 
483 m above ground level (site is at sea level), and 222Rn at 91 m. The in-situ measurements of 
CH4, CO2, and CO, were made using a sampling and analysis system combining pumps, air 
driers, and three gas analyzers. Briefly, air samples are drawn continuously from the different 
heights on the tower, are partially dried by a condensing system that lowers water vapor to a 5 
°C dew point, are sequentially applied on a 5 minute interval to a temperature stabilized 
membrane drier (Purmapure Inc.) which dries air to a -33 °C dew point, and then are supplied 



to the gas analyzers.  The first 4.5 minutes of each measurement interval are used to allow 
equilibration of the gas concentrations and instrument response, while the last 30 seconds is 
used as the measurement interval.  In particular, CH4 is measured using a cavity ring-down 
spectrometer (Picarro EnviroSense 3000i) with an accuracy and precision of approximately 0.3 
ppbv.  

To quantify and correct instrument drifts in the in-situ measurements, the offset is measured 
and corrected every ½ hour using a reference gas, while the gain (and linearity) is checked and 
corrected every 12 hours using 4 NOAA gas primary standards. To provide additional quality 
assurance, the in-situ CH4 measurements were compared CH4 measurements obtained from 
twice-daily flask samples collected from a separate dedicated sample line at the same height on 
the tower as the in-situ measurement.  This redundancy allows the detection of even small 
sampling errors.   

Measurements of 222Rn mixing ratios in ambient air were made using a dual-filter continuous 
222Rn analyzer (Zahorowski et al., 2004), sampling air from an inlet at 91m on the WGC tower.  
The 222Rn instrument was calibrated monthly using a calibration standard with a known 
activity.  The calibration coefficient was constant to within 8% RMS over the 12 calibration 
events collected over the year-long data set. 222Rn concentrations (Bq m-3) were also converted to 
mixing ratios (atoms mol-1 air) using pressure, temperature, and relative humidity measured 
inside the radon detector. 

Soil Radon Flux Measurements 
Soil radon fluxes to the atmosphere were made using an automated soil gas flux chamber 
designed for soil CO2 fluxes (Licor LI-8100) combined with a portable alpha spectrometer to 
(Durridge Company, Rad-7). In this closed-loop measurement, air was circulated from the soil 
into the LI-8100, through a desiccant tube (Dririte) to remove water, and then through the Rad-7 
before returning to the soil chamber. The 222Rn flux, FRn, was determined from the time rate of 
change of Rn concentration, dRn/dt as FRn = V/A dRn/dt, where A is the surface area of the 
soil chamber, and V is the volume of the measurement system.  The calibration of the system 
volume was verified to within 10% using a source (Pylon Inc.) with known 222Rn emission. The 
automated measurements of dRn/dt each lasted 2 hours and were repeated every 6 hours over 
periods of about 10 days.   

 

Meteorological Measurements 
To quantify uncertainties in modeled atmospheric transport, hourly boundary layer heights and 
vertical profiles of winds were obtained from a radar wind profiler (RWP) operated by the 
Sacramento Metropolitan Air Quality Management District. The profiler is located (38.3025°N, 
121.4214°W) within 8 km of the tower used for the CH4 measurements, which given the level 
terrain of the delta region, is sufficiently close to provide an accurate assessment of winds and 
PBL heights at the tower.  The RWP wind data have a vertical resolution of about 100 m at 
heights from ~120 m up to ~3500 m agl.  Boundary layer heights were estimated from sub-
hourly RWP vertical velocity and returned signal strength (signal-to-noise ratio) data using 
objective algorithms and qualitative analysis following techniques found in Wyngaard and 
LeMone (1980), Bianco and Wilczak (2002), and Bianco et al. (2008).  The RWP can detect 
boundary layer heights from about 120 m to 4,000 m with an estimated accuracy of ± 200 m 



(Dye et al., 1995).  For the work presented in this paper, the boundary layer heights were either 
the top of the marine boundary layer or convective boundary layer during the day and the 
marine boundary layer at night.  Shallow nocturnal boundary layers were rarely observed due to 
a persistent onshore marine flow that occurs in the summertime in the central Sacramento 
Valley.  The RWP wind and boundary layer height data were quality controlled prior to 
comparison with the model predictions. 

2.3. Preliminary Estimation of Regional CH4 and N2O Emissions 
The goal of this task is to perform a proof-of-concept estimation of regional CH4 emissions and 
other GHG gases using initial GHG and 222Rn measurements, and the inverse and mixing model 
approaches described above. The inverse and mixed model approaches are techniques designed 
to estimate the geographical location from which the air mass being measure at a given time 
originates. 

Estimate CH4 emissions derived from initial measurements  

• Investigate the reduction in uncertainty of CH4 sources that can be obtained using data 
from additional measurement stations and/or 222Rn measurements. -CZ  - you need to do 
some runs combining data and simulations from both WGC and STR for Oct-Dec2007.  
(Not here, this part is approach part, the simulations or estimates should be put in the 
results part) 

• Investigate the use of 14CH4 as a tracer of natural gas and other fossil fuel CH4 
emissions-WJR-can they use the output from the tracer runs to inform this?  

2.3.1. Radon Mixing Model Emission Estimates 
Following previous work, the authors estimate CH4 and N2O emissions using the radon mixing 
model approach (Levin et al., 1999, Biraud et al., 2000).  Here, the surface flux of an unknown 
species, Fx, is assumed to be spatially similar to the surface flux of 222Rn and undergo the same 
atmospheric transport to the measurement site.  Under these assumptions, the variations in 
mixing ratios are expected to be linearly related such that the flux can be determined as Fx = 
FRn dX/dRn, where X is CH4 or N2O mixing ratio respectively. In the following work, the 
authors compare the measured mixing ratios of CH4 and N2O to the measurements of Rn to 
determine best estimates for the footprint averaged surface fluxes of CH4 and N2O.  

2.3.2. Lagrangian Model Prediction of GHG Mixing Ratios 
Calculation of Footprints and Mixing Ratio Signals 
Lagrangian particle transport was calculated using the STILT model, run in the time-reversed 
(receptor-oriented) mode. STILT is a Lagrangian Particle Dispersion Model (LPDM) that has 
been specifically developed and applied to regional simulations and inverse flux estimates for 
CO2, other greenhouse gases, and CO. Its detailed description is provided elsewhere (Lin et al., 
2003, 2004a; Gerbig et al., 2003a; Matross et al., 2006; Kort et al., 2008; Miller et al., 2008) and, 
consequently, only the most pertinent features will be summarized here. As in all LPDMs, 
transport in STILT includes both advective and turbulent components, with turbulence being 
responsible for the dispersion of particles. In this application, given input meteorological data, 
the STILT model transports ensembles of 100 particles (air parcels) backwards in time 5 days 
for a receptor point (WGC site here). The authors calculate the response of the target gas 



concentration at the receptor point to surface sources (“footprint”), in units of ppb/(nmol m-2 s-

1). The footprint, which represents the adjoint of the transport field, is calculated by counting 
the number of particles in a surface-influenced region (defined as ½ of the estimated PBL height 
in the STILT model, for example see Gerbig et al., 2003a; Kort et al., 2008) and the time spent in 
the region (for details, see Lin et al., 2003). When multiplied by the a priori field of surface flux, 
the footprint gives the associated contribution to the mixing ratio measured at the receptor, 
hence the footprints can be used to estimate parameters of the source functions and their 
respective uncertainties. 

The authors use a customized version of the Weather Research and Forecast (WRF) model 
(Skamarock et al. 2005) to drive STILT. This combined model will henceforth be referred to as 
WRF-STILT. Specifically, the WRF model version 2.2 has been modified to output time-
averaged (hourly in this study) values of the mass-coupled velocities, which significantly 
improve mass conservation in STILT (compared with the instantaneous advective velocities), as 
well as convective mass fluxes that are used directly in the STILT calculations. The main 
physical options are set as following: (a) Radiation: RRTM scheme (Mlawer et al., 1997) for the 
longwave and Goddard scheme (Chow and Suarez, 1994) for the shortwave; (b) Planetary 
Boundary Layer: Yonsei University (YSU) scheme coupled with the NOAH land surface model 
and the MM5 similarity theory based surface layer scheme. (c) Microphysics: Purdue Lin 
scheme (Lin et al., 1983; Chen and Sun, 2002) (d) Convection: Grell-Devenyi ensemble mass 
flux scheme (Grell and Devenyi, 2002).  The initial and boundary meteorology conditions for 
WRF are provided by the North American Regional Reanalysis (NARR, Mesinger et al., 2006). A 
one-way nesting WRF running with 3 nest levels is used for the meteorology simulations around 
the WGC tower location, which is shown in Figure 1 (Domain 1: -149.16° < lon< –102.21°, 
17.82° < lat < 50.53° on a 40 km grid; Domain 2: -123.53° < lon < -120.66°, 36.76° < lat < 
38.94° on a 8 km grid; Domain 3: -121.71° < lon < -121.23°, 38.09° < lat < 38.45° on a 1.6 km 
grid). The vertical resolution is taken from the input meteorology from NARR with 30 layers. 
Each day was simulated separately using 30-hour run (including 6 hours from the previous day 
for spin-up) with hourly output. Growth in transport model errors were minimized by nudging 
the forecast fields to the gridded NARR analysis fields every 3 hours.  



 

Figure 1. Map grids showing the three model domains used in the 
meteorological predictions, and WGC tower location “X” (-121.49, 
38.26) of the measurements. 
 

Particle trajectories were calculated using STILT driven by the WRF winds.  One hundred 
particles are released every 3 hours (from UTC hour 00) at the tower locations and transported 
backward in time 5 days to insure a majority of the particles reach positions representative of 
the marine boundary layer.  Footprints are then calculated from the particle trajectories as in 
Lin et al. (2004). 

 

Predicted local CH4 signals ),(
rrl
tXC  (index ‘l’ denote local and ‘r’ denote receptor) from land 

surface emissions are calculated using the product of the footprint maps and the a priori 
emission maps, as  
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mixing ratio at the receptor can be expressed as 
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where ),(
rrBG
tXC  is the upstream CH4 background condition.  

In order to compare the simulated local CH4 mixing ratios to the tower measurements, the 
upstream CH4 background mixing ratios should be subtracted from the total measurements. For 
this study, the authors calculated the upstream CH4 mixing ratio using the final latitude of each 
particle as a lookup into the longitudinal average marine boundary layer CH4 mixing ratios for 
October-December, 2007 (NOAA Globalview CH4). The authors note, on average, persistent 
longitudinal gradients in CH4 at background sites up to ~10 ppb. Particularly, annual means at 
sites of SHM and CBA in the Pacific are typically about 10 ppb greater that site of MHT in the 
Atlantic. Therefore, our adoption of background CH4 mixing ratios might be somewhat 
underestimated, which causes the ‘measured’ local contributed CH4 mixing ratios a little higher 
than true values. For measurements at WGC site, the authors also use the daily minimum CH4 
mixing ratio measured at 483 m to evaluate the the error in CH4 background. The reason that 
the daily minimum CH4 mixing ratio at 483m often reflects that of background air is because the 
483m sample height decouples from the surface at night (when 91 m < Zi < 483 m). 

Analysis of Transport Model Errors 
As a first approximation to evaluate the transport errors in the WRF-STILT predictions of 
surface influence footprints, the authors compared the modeled estimates of WRF winds and 
WRF-STILT boundary layer heights (Zi) with corresponding profiler measurements of wind 
velocity and Zi. at Sacramento site. 

Errors in modeled winds are estimated by comparing WRF predictions with profiler or tower 
measurements of the u and v wind components. First, the authors compare the winds of u and v 
between measurements and WRF-STILT simulations, and figure out their residual errors 

u
!  and  

v
!  (RMS). Then, for simplicity, the authors assumed errors in u and v are independent, and 

hence that the RMS horizontal wind error can be calculated as 22

vuV
!!! += . 

The evaluation of errors in boundary layer height was performed when profiler measurements of 
Zi were available. The authors used a best fitting geometric regression method to find the linear 
relationship between WRF-STILT and radar profiler PBL heights. Considering the relatively 
bigger uncertainties in Zi for both WRF-STILT and radar profiler at night period, only the linear 
relationship determined by well-mixed daytime reliable PBLs (e.g. WRF-STILT Zi bigger than 
the minimum of 215 m) are used to correct the PBLs in WRF-STILT. After the correction of 
WRF-STILT PBL, the authors re-compared the PBLs between WRF-STILT and radar profiler to 
figure out the RMS residual error. The scaled Zi and new RMS residual error will be used to 
estimate the footprints and the transport error due to PBL uncertainties in the following work.   



2.3.3. Linear Regression Analysis of Predicted and Measured CH4 Signals 
As a first order comparison of measured and predicted CH4 signals, the authors plot total 
predicted signal versus background-subtracted measured CH4 and compute a best-fit linear 
model.  In this case, the authors use a Chi-squared (fitexy, Press et al. 1992) mean linear 
regression model, which assumed the same relative errors in x and y components.  While this 
does not provide information on individual source sectors or spatial regions, a comparison of 
total signals provides and shows the degree to which the combination of the prior emission 
inventories and transport model captures the measured signal.  

2.3.4. Bayesian Inverse Estimates of CH4 Emissions 
A posteriori CH4 emissions were estimated by optimizing scaling factors for the a priori CH4 
emissions that provide the best fit between measured and predicted CH4 mixing ratios. This 
was done by scaling emissions from different sectors or sub-regions separately and incorporates 
individual estimates for the uncertainties in different a priori emissions. 

Combining Eq. (1) and (2), the difference between measured and predicted background CH4 
relates to the surface emission flux as 

FfCC BG =!  (3) 

where f  is footprints, F  is surface CH4 emission, C  and 
BG
C  is CH4 mixing ratios from tower 

measurements and background calculations, respectively. Assuming mixing ratio measurements 
from local sources as BGCCy != . Following Gerbig et al. (2003a), the authors introduce a 

model parameter or a state vector of scaling factors,! , for the surface flux, )(!F . The inversion 
adjusts the model parameters !  such that the modeled changes in CH4 concentrations are 
optimally consistent (in standard least square sense) with the observed values.  In the study of 
surface CH4 emissions from different sources (“source analysis” hereafter), !  represents the 
scaling factor for different sources; in the study of surface CH4 emissions from different regions 
(“region analysis” hereafter), !  represents the scaling factor for different areas. For both the 
“source analysis” and “region analysis” study, )(!F  is linearly dependent on ! : 

!"! =)(F          (4) 

where !   is the a priori emissions for different sources or regions in this study. 
 
Using the same method as Lin et al. (2004), the analytical solutions to Eqs (3) and (4) are 
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where !fK = , 
!
S  is measurement error covariance matrix prior

! and !̂  are the a priori and a 

posteriori vectors, and 
prior
S and  

!
Ŝ are the a priori and a posteriori error matrices for! . 

Corresponding to our initial estimate of 30% uncertainty in the CH4 emission maps, the initial 



value of 
prior
S  is 0.09. Note that the measurements and a priori emission error matrices are 

diagonal, equivalent to assuming that the prior errors are uncorrelated. . 

Measurement-Model Error Matrix 
In the Bayesian analysis, the authors put the errors in both measurements and model 
simulations together as an equivalent “measurement” error. The equivalent “measurement” error 

covariance matrix !S  is formed as the sum of different components  

oceaneddyemisbkgdTransPBLTransWNDaggrpart
SSSSSSSSS +++++++=

!
    (6) 

Here, as in Lin et al. (2004), the contribution of instrumentation error in the CH4 measurements 
is assumed to be random, uncorrelated, and negligible in magnitude relative to the other sources 
of error, and hence not considered further in the inverse model estimates. The authors consider 
each of the terms in Eq. (6) below. 

The particle number error ( partS ) is due to the finite number of released particles at the receptor 
location. It can be estimated by comparing the simulated signals from the STILT running with 
release of 1000 particles and those from the STILT running with release of 100 particles. The 
standard error between them will be used as the particle number error. For all of the following 
error analyses, the authors used 1000 particles in order to minimize the effect of particle number 
error. 

The “aggregation error” ( aggrS ) arises from aggregating heterogeneous fluxes within a grid cell 
into a single average flux (Kaminski et al., 2001). Gerbig et al. (2003b) demonstrated that a 
rough estimate of the aggregation error can be derived from the observed “representation error”, 
which is derived from the difference between a point observation and a value averaged over a 
specific grid size (Gerbig et al., 2003a).  Without multiple observation stations over a specific 
grid, the authors try to estimate the aggregation error based on the a priori CH4 emissions. 
Although the authors do not have high-resolution emission maps for all of the CH4 sources, the 
authors estimate aggregation error using landfill emissions, which are fully resolved. Here, the 
aggregation error is estimated by comparing the un-aggregated landfill signal from to the landfill 
signal estimated after averaging emissions over each county (the maximum aggregation used for 
the other sources).   

The transport error (
TransPBLTransWNDTrans
SSS += ) denotes the errors in modeling transport, 

which can be caused by the uncertainties in wind speeds and directions, and the uncertainties in 
PBL heights. Following Lin and Gerbig (2005), the transport error due to winds 

TransWND
S  is 

calculated as the RMS difference between signals predicted from simulations with and without 
input of an additional stochastic component of wind error 

V
!  in STILT. 

Uncertainty due to errors in modeled PBL heights 
TransPBL
S  is estimated by propagating the 

residual error Zi into the predicted CH4 signals. Here, the authors use the estimate of residual 
error in Zi determined from the comparison between predicted WRF-STILT PBL height and PBL 
height measured with the wind profiler. The sensitivity of CH4 signal to Zi is expressed as a 
first order perturbation in C as 
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dC

dZi
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where γ is estimated by calculating STILT footprints and then variations in C for small 
perturbations in Zi. The error due to error in Zi can then be estimated as 
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S
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where Zi! is the residual error in WRF-STILT Zi, and <C> is the mean total CH4 signal. Using 
Eqs. (7) and (8), the estimated transport error due to PBL uncertainties can be calculated. 
Assuming the transport errors due to winds and PBL height are independent, the total 
transport error is obtained by 

TransPBLTransWNDTrans
SSS += . 

The background error (
bkgd
S ) is due to the uncertainty in estimating the background contribution 

to the CH4 measurements at the tower location.  For this study, the authors estimate the 
upstream background CH4 mixing ratio using the final latitude of each particle as a lookup into 
the latitudinally averaged marine boundary layer (MBL) CH4 for October-December, 2007 
(NOAA Globalview CH4). Only time points (> 95% of the total) for which more than 80% of 
the particles reached longitudes 1.5 degrees from the coast were included in the study.  The 
authors expect that the NOAA MBL average will be a reasonable approximation for the CH4 
background because it is heavily weighted to the Pacific and the typical CH4 gradients between 
Pacific and Atlantic are less than 10 ppb. For WGC site, the authors evaluate the error in CH4 
background using the daily minimum CH4 mixing ratio measured at 483 m.  

 
emis
S  indicates the emission error due to possible missing emission sources. The authors assume 
that there are no other emission sources and thus no emission error ( 0=

emis
S ) in this study. The 

eddy flux error ( eddyS ) specifies the fluctuations in column integrated CH4 due to contributions 
from turbulent eddies. Gerbig et al. (2003a) observed it is ~ 0.2 ppmv for CO2. For CH4 studied 
here, a value of 1% is assumed.  The error due to omitting ocean emissions (

ocean
S ) is assumed 

to be negligible.  To evaluate this assumption, the authors calculated the expected CH4 signal 
from the Coal Point field near Santa Barbara, the largest known coastal natural gas field near 
California (Mau et al., 2007), and found the signals to be less than 1 ppb.  

In order to combine the above errors from different sources, the authors need to know their 
correlations, which are unfortunately unknown. Assuming the errors from different sources are 
independent, the above errors are combined in quadrature to yield a total expected model-
prediction mismatch error using Eq. (6). 

2.4. Design of an Enhanced Monitoring Network 
After completing the initial analysis of CH4 emissions, the authors considered the potential 
benefit of adding measurement sites to form a tower network, and the use of radiocarbon 
methane measurements for separating fossil and biogenic CH4 sources. 



2.4.1. Benefit of Additional Measurement Sites 
To evaluate the benefit of adding additional measurement stations, the authors conducted a 
synthetic data experiment to retrieve CA CH4 emissions using seven measurement stations 
distributed across California.  For each station, footprints and simulated tower CH4 mixing 
ratios are calculated as in section 2.3.2.  Synthetic “data” was generated by adding random 
noise (mean=0, std=10 ppb) to the simulated CH4 signals.  Different combinations of synthetic 
data from one or more of the seven stations are then used in joint inversions for regional 
emissions as in Section 2.3.4.  The reduction in uncertainty for the scaling factors for regional 
emissions is used to judge the effectiveness of adding additional measurement stations. 

2.4.2. Use of Radiocarbon Methane (14CH4) to Identify Fossil CH4 Emissions 
Atmospheric measurements of radiocarbon (14C) in CO2 have been used to estimate fossil fuel 
CO2 emissions (Turnbull et al., 2006; Levin et al., 1995; Hsueh et al., 2007; Riley et al., 2008). In 
the current study the authors tested an analogous approach using radiocarbon in atmospheric 
methane (14CH4). Because 14C has a relatively short half live (~5730 y) compared to the ancient 
plant material from which fossil fuels are derived, carbon in fossil fuels is effectively free of 14C 
(i.e., Δ14C =  -1000‰). Current atmospheric 14CH4 content is the result of previous atmospheric 
nuclear weapon testing, nuclear power sources, and terrestrial and aquatic exchanges (Lassey et 
al. 2007). To make a first estimate of the impact of fossil fuel CH4 emissions on atmospheric 
Δ14C of CH4, the authors used preliminary estimates of the 14C content of each CH4 source that 
the authors considered in California: anthropogenic natural gas and petroleum (-1000‰), 
landfills (100‰), livestock (100‰), wetlands (100 ‰), and boundary (60‰). The uncertainty 
in the 14C content of these sources is large; increasing confidence in the use of 14C in CH4 
necessitates better characterization of these values.  

3.0 Results and Discussion 

3.1. Identification of Observing Stations 
3.1.1. Inventory Estimates of CH4, N2O and 222Rn Emissions 
Maps of the a priori CH4 emissions are shown in Error! Reference source not found. a-f for 
these six California-specific source sectors. For comparison, Error! Reference source not 
found. g shows total EDGAR 3.2 emissions for the Western US, while Error! Reference source 
not found. h shows the sum of the CA-specific CH4 emissions. Last, Error! Reference source 
not found. i shows a set of California sub-regions that roughly correspond to air basins that are 
nearby or distant from the measurement locations and will be used in following analysis. In the 
following work, the authors follow previous work on uncertainty analysis (USEPA, 2004; 
Farrel, 2005) and assign a 30% uncertainty across the different sources as the a priori 
uncertainty on emissions estimates used below. The authors consider the uncertainties in US 
total CH4 emissions only a rough estimate to the uncertainties for sub-regions of California (and 
over the time period of this study) because the 30% estimate was derived for more aggregated 
emissions over annual cycles and the entire continental US. 

Table 1 summarizes the CH4 emissions from different California-specific sources in the 13 sub-
regions.  CH4 emissions are scaled to equivalent CO2 forcing using a global warming potential of 
25 (gCO2eq gCH4

-1) (IPCC, 2007).  The total of the California-specific emissions is similar to 
total CH4 emissions (~ 31 MMT CO2eq ) reported by the California Air Resource Board (CARB, 



2007), but is approximately half the total emissions from California pixels in the Edgar 3.2 
inventory. Inspection of the Edgar 3.2 emissions shows that the largest sources are from natural 
gas (22.5 MMT CO2eq) and landfills (19.3 MMT CO2eq), suggesting very different assumptions 
about emissions from these sources.  

 

CH4   

(MMT CO2eq) 

CP LF LS NG PL WL CA.spec Edgar3.2 

Region 01 0.04 0.02 0.04 0.00 0.02 0.06 0.18 0.92 

Region 02 0.01 0.04 0.15 0.00 0.10 0.02 0.29 1.09 

Region 03 0.01 0.05 0.20 0.01 0.20 0.02 0.45 1.74 

Region 04 0.04 0.10 0.18 0.00 0.17 0.05 0.48 1.56 

Region 05 0.05 0.02 0.39 0.00 0.11 0.07 0.57 1.76 

Region 06 0.02 0.40 0.51 0.36 0.62 0.04 1.81 4.30 

Region 07 0.01 0.74 0.31 0.67 1.50 0.02 3.25 5.95 

Region 08 0.01 0.27 2.06 0.01 0.32 0.02 2.32 3.73 

Region 09 0.02 0.26 0.24 0.13 0.37 0.02 0.96 3.48 

Region 10 0.11 3.75 1.68 0.88 3.62 0.17 10.21 25.14 

Region 11 0.02 0.13 0.19 0.01 0.10 0.02 0.47 1.09 

Region 12 0.06 0.31 3.65 0.31 0.73 0.10 5.16 7.95 

Region 13 0.01 0.06 0.06 0.19 0.19 0.02 0.53 1.07 

Whole CA 0.42 6.15 9.66 2.57 8.03 0.63 27.46 59.78 

Table 1. Inventory estimates of a priori CH4 emissions from 6 
different sources including crop agriculture  (CP), landfills (LF), 
livestock (LS), natural gas (NG), petroleum (PL), wetlands (WL) and 
13 California sub-regions identified in Error! Reference source not found.i. 

 



 

Figure 2. The a priori emission maps and regions in California. a-f) 
are the CA-specific surface CH4 emissions from different sources; g) 
is the sum of anthropogenic surface CH4 emissions from Edgar 3.2;  
h) is the sum of maps b-g) specific to California; and i) is an 
illustration of the 13 California sub-regions considered in the spatial 
analysis. 



 

The authors also examined N2O emissions from crop agriculture estimated by Salas et al. (2006) 
and from Edgar3.2 for the year 2000.  As shown in the first three panels of Error! Reference 
source not found., the emissions vary significantly with season, largely due to the combination 
of timing in fertilizer application and irrigation. Other significant sources of N2O in California 
include wastewater treatment and fuel combustion sources. Hence, total anthropogenic N2O 
emissions are likely to be temporally smoother (see lower right panel) because other N2O sources 
are likely to be more constant across seasons.   

 

Figure 3. The a priori N2O emissions simulated for a dry year (1997) 
with low irrigation in July, (upper left), October (upper right), and 
annual mean (lower left) from Salas et al. (2006), while annual mean 
anthropogenic N2O emissions from Edgar3.2 are shown in lower right. 
 



3.1.2. Predicted maps of time varying CH4 Mixing Ratios 
MM5 Results 
The authors compared radon-corrected CH4 predictions to CH4 measurements at the Walnut 
Grove Tower using the MM5-LSM model predictions.  As shown in Error! Reference source not 
found., the model predictions followed many of the dynamics observed during October and 
February, with values falling within the ±1 SD of the measurements for much of these periods. 
During July, however, the model substantially under predicted the observations. 

 

 

Figure 4.  Comparison between predicted and observed CH4  
concentrations at the Walnut Grove Tower for October, 2007 (top), 
and July, 2008 (bottom). Because the measurements are highly 
variable, a 6-hour running averaged has been applied. The range 
shown for the measurements represents the ±  1 SD range of the 
measurements at 91 m.  
 



Predicted well-mixed afternoon (1400 local time) CH4 mixing ratio at 91 m varied substantially 
over the state and over time. Error! Reference source not found. shows predicted monthly-
average midday CH4 mixing ratios for October, 2007, and July, 2008, calculated using the Edgar 
CH4 emission inventory. The largest predicted CH4 mixing ratios were found for the Los Angeles, 
where the Edgar inventory has very strong emissions, while the Central Valley also shows 
elevated mixing ratios that should be readily measured with current instrumentation.  The 
authors also predicted N2O mixing ratios, which were elevated by several 1-10 ppb due to 
emissions from agricultural regions of the Central Valley. 

 

Figure 5. Predicted monthly-average midday CH4 mixing ratios at 91 
m for October, 2007 and July, 2008.  
 
3.1.3. Locations of Potential Measurement Stations 
The authors identified a set of potential tower measurement stations from FCC lists using the 
predicted CH4 mixing ratios as a guide to where the different measurements could identify 
different sources: background air entering California, urban emissions, and rural emissions. The 
general locations of these sites correspond to a subset of the sites identified previously for CO2 
measurements (Fischer et al., 2005).  The seven potential measurement sites, spanning a range of 
emissions sources and air basins, are shown in Error! Reference source not found. and listed 
in Table 2. 

 



 

Figure 6. List of potential measurement sites for observation of CH4 
and other GHG mixing ratios from background air, and urban and 
rural sources in California. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Station 
 

Name 
 

Latitude 
 (degree) 

Longitude 
(degree) 

Measurement 
height (m agl) 

1 

LA Tower 

(near Mt Wilson)  34.223 -118.0625 296 

2 

South Coastal Tower 

(near Scripps Pier ) 32.867 -117.257 10 

3 Sutro Tower (STR) 37.755 -122.453 232 

4 

North Coastal Tower 

(near Trinidad Head) 41.050 -124.15 10 

5 

South Valley Tower 

(near Fresno, CA) 36.700 -119.300 259 

6 
Walnut Grove Tower 
(WGC) 38.2650 -121.4911 91 

7 
North Valley Tower  
(near Tuscan Buttes) 40.262 -122.093 304 

Table 2. List of seven potential measurement sites spanning a range 
of dominant emissions sources across California. Two of these 
towers (Sutro Tower and Walnut Grove Tower) were instrumented for 
GHG measurements. 
 

3.2. Gas Measurements 
3.2.1. Mixing Ratios Measured at Towers 
Flask measurements of CH4, CO2, N2O, CO, SF6, and H2, are shown for the Walnut Grove (WGC, 
at 91 m) and Sutro (STR, at 232 m) towers in Error! Reference source not found. and Error! 
Reference source not found. respectively. Measurements, from October 2007 through 
September 2008 period, at both WGC and STR exhibit long term trends reflecting global buildup 
(IPCC(2007)of some of the gases (e.g., SF6), while other gases (e.g., CO2) exhibit seasonal 
variations in background mixing ratios. With the exception of some high mixing ratios measured 
during in winter and spring, the measurements at STR largely reflect background air, while those 
at WGC exhibit considerably more variability due to local to regional terrestrial sources. Gaps in 
the data sets are due to periods (e.g., STR in July, 2008) when sampling systems malfunctioned 
or leaks were detected. 



 

Figure 7. Mixing ratios of CO2, CH4, N2O, CO, SF6, and H2 measured at 
91m agl on the Walnut Grove (WGC) Tower. 



 

Figure 8. Mixing ratios of CO2, CH4, N2O, CO, SF6, and H2 measured at 
232m agl on Sutro Tower. 
 
In-situ measurements of CH4, CO2, CO, and 222Rn are shown for all sampling heights on the 
WGC tower.  As shown in Error! Reference source not found., the measurements show both 
diurnal, synoptic, and seasonal variations reflecting the combined effects of boundary layer 
heights, air flow patterns, and varying emissions.  Generally the 30 and 91 m measurements 
reflect local to regional emissions and are tightly coupled through the planetary boundary layer, 
while the 483m measurements more reflect a combination of tropospheric or marine boundary 
layer air with comparatively small influence from regional emissions except during the summer 
or warm afternoons in winter or the boundary layer grows higher than 483m. To evaluate errors 
in the sampling and analysis, the authors computed the difference between the in-situ and flask 
analyses for daytime and nighttime flask samples separately.  For both of these periods, the 
differences exhibit negligible bias and variance consistent with the larger of instrument precision 



and the atmospheric variability determined from the variance of in-situ measurements in 30 
minute windows centered on the flask samples. 

 

Figure 9.  CO2, CH4, CO mixing ratios, and 222Rn mixing ratios 
measured at the Walnut Grove tower. 
 
To evaluate local to regional emissions, the authors focused on the continuous CH4 mixing ratio 
data measured at 91 m on the WGC tower in the October to December, 2007 period. Error! 
Reference source not found. shows 3-hour average of measured CH4 mixing ratios at 91 m 
and 483 m in October 2007. Diurnal cycles due to changing boundary layer height are apparent 
in the data. The daily maximum CH4 mixing ratio measured at 91 m often occurs when the 



minimum is obtained at 483 m. This would be expected to occur in cases when the boundary 
layer lies between 91 and 483 m, trapping surface emissions within a shallow layer that is 
measured by 91 m sample height, while the 483 m sample height observes comparatively 
decoupled background air. The authors use the daily minimum CH4 measurements at 483 m to 
provide a check on the CH4 background analysis. Moreover, the authors limited the inverse 
model study to only include measurements collected during well-mixed periods. Henceforth, the 
authors define the well-mixed periods by using the criteria that the difference of measurements 
at 91 m and 483 m are less than 100 ppb, as shown by the black points in Figure 10. This 
criteria will also be evaluated with a more constricted value of 50 ppb in the authors’ study.   

 

Figure 10. CH4 mixing ratios measured at 91 m (black) and 483 m (red) 
at the WGC tower. Only data (black points) obtained during well-
mixed periods (defined as when the difference between 
measurements at 91 m and 483 m are less than 100 ppb) are used in 
this study. 
 
3.2.2. Background GHG mixing ratio time series  
 Figure 11 shows the calculated values of background CH4 mixing ratios from the NOAA MBL 
average and WGC 483m minimum estimate as a function of time at WGC site during well-mixed 
periods from October through December in 2007. The background CH4 mixing ratios obtained 
from NOAA latitudinal average over marine boundary layer mainly lie between 1850 and 1880 
ppb with a mean value of 1860 ppb, which have a much smaller variation than those from daily 
minimum at WGC 483 m. Figure 11 (b) shows that there is no systematic bias, although the 
minimum CH4 mixing ratio at 483 m is occasionally enhanced relative to the NOAA MBL 
average, likely due to local CH4 contributions. The authors estimate the error in CH4 background 
calculation as the RMS difference in Figure 11 (b), which is 15% of the mean background-
subtracted measurements at 91 m. 



 

Figure 11. Time series of background CH4 mixing ratios, calculated 
from the NOAA global latitudinal average marine boundary layer (red) 
and the daily minimum measured at 483 m (black) a), and the 
difference of these signals b). 
3.2.3. Preliminary Measurement of Soil Radon Fluxes 
Preliminary measurements of soil radon flux to the atmosphere were conducted for 
approximately 10 day periods in November at the Lawrence Berkeley National Laboratory, and 
in December, 2008 at the WGC tower. The measured soil radon fluxes were 1.2 ± 0.15 and 1.1 ± 
0.1 atoms cm-1 s-1 at LBNL and WGC respectively. The authors note these values for soil radon 
flux are consistent with commonly held assumptions (e.g., Biraud et al., 2000).  However, the 
222Rn flux measurements do not sample the surface fluxes over the region contributing to the 
tower measurements.  Hence the uncertainty in average 222Rn flux is potentially significantly 
larger than the roughly 10% fractional uncertainty obtained from the chamber measurements. 

3.3. Preliminary Estimation of Regional CH4 and N2O Emissions 
3.3.1. Radon Mixing Model Emission Estimates 
The authors estimated CH4 and N2O emissions in the footprint of the WGC tower for the 
October-December, 2007 period using the 222Rn mixing model. As shown in Figure 12, the slopes 
of CH4 and N2O to 222Rn determined from a geometric linear regression are 39 ± 3 (R2 = 0.67) and 
0.36 ± 0.04 (R2 = 0.48) ppb /(Bq m-3 ) respectively.  Assuming a mean Rn flux of 1 atom cm-2 s-1, 
the footprint averaged flux of CH4 and N2O using the mixing model method are 33 and 0.3 nmol 
m-2 s-1 respectively.  The estimated CH4 and N2O emissions are approximately consistent with 
the average total emissions for Central California shown in Figure 2Error! Reference source not 
found.Error! Reference source not found.. However, the uncertainty in 222Rn emissions is large 
(likely significantly greater than the 10% obtained from soil chamber the measurements), 



creating a proportional error in CH4 and N2O emissions.  The authors note that these 
comparisons are preliminary because uncertainty in the mixing model results are subject to 
uncertainty in the actual radon flux and errors inherent in the assumption that the 222Rn and 
GHG emissions are spatially correlated. The later assumption can, in principle, be tested if the 
spatial distributions are assumed to follow those represented by the a priori emission estimates 
using the method described in Hirsch (2006). 

 

 

Figure 12. Correlation plots of CH4 and N2O versus 222Rn measured at 
91 m on the Walnut Grove tower over the period. Lines indicate best-
fit geometric linear regressions.  
 
3.3.2. Lagrangian Model of GHG Mixing Ratios 
As described above, the authors use an inverse model to estimate the regional distributions of 
GHG fluxes which rely on numerical prediction of regional meteorology.  In this section the 
authors examine the errors in predicted meteorology and how those errors affect predicted GHG 
signals, and then provide initial estimates of CH4 emissions for Central California. 

 

Atmospheric Transport Model Errors 
The authors evaluated the errors in winds WRF-STILT winds using measurement from October 
2007. As shown in Figure 13, WRF-STILT winds highly agree well with the tower measured 
winds with good correlations in both u (r2=0.80) and v (r2=0.69). The RMS errors in horizontal 
winds at 137 m are 21.2=

u
! and 86.2=

v
!  m s-1. Some of this difference can be attributed to 

the fact that profiler winds are measured at a single site while the WRF winds are the averages 
over a grid of 1.6 km x 1.6 km. The authors note that the wind RMS error decreased by 
approximately a factor of 2 between 137 m and 1000 m, though the decrease was non-linear 
with most of the decrease occurring between 137 and about 500 m. Henceforth, the authors 
assume errors in u and v are constant with height and randomly distributed with an RMS 



magnitude of 6.3
22
=+=

vuV
!!!  m s-1. Following Lin and Gerbig (2005), the transport error 

due to winds 
TransWND
S  is calculated as the RMS difference between signals predicted from 

simulations with and without input of an additional stochastic component of wind error 
V

!  
(3.6 m/s) in STILT. The resulting RMS signal is equivalent to 8% of the average predicted CH4 
signal.. 

 

Figure 13. The comparison of winds U and V components between 
WRF-STILT simulations and tower measurements at WGC site. Solid 
line is for tower measurements and dashed line is for WRF-STILT 
simulations; and red, green and black dots represent night period 
(UTC hour time between 6 and 18), day period (UTC hour time 
between 18 and 6) and transition period (UTC hour time of 6 and 18), 
respectively.  
 
For the transport error due to PBL heights, data in October through December 2007 were 
obtained and used in this analysis. Figure 14 shows the comparisons of daytime PBL heights 
between radar profiler measurements and WRF-STILT simulations.  Profiler data were selected 
to match the time of the WRF-predictions to within 1 hour.  In addition, the WRF-STILT 
simulations impose a lower limit value of 215 m on Zi, while the radar profiler has a minimum 
detection height of 120 m.  To avoid biasing the comparison and make sure CH4 well mixed 
from surface till heights above 483 m, the authors included WRF-STILT predictions of Zi greater 
than 215 m in the analysis. The resulting best fit geometric linear regression of WRF-STILT on 



radar profiler PBL heights yields a slope of 1.25±0.10 and intercept of -138±70 m. Based on 
this result, the authors obtain a scale factor of 1/1.25 which is then applied to Zi when 
calculating footprints using STILT. This result is similar to that found in Lin et al. (2003), where 
STILT predictions of Zi were about 1.09 higher than Zi measurements at a site in Wisconsin. 
After scaling STILT Zi by a factor of 1/1.25, the RMS residual error between scaled WRF-STILT 
and profiler Zi is reduced by a factor of 1.5 to ~ 200 m, roughly consistent with the estimated 
error in the profiler measurements. () 

In the following work, the authors calculate particle trajectories and resulting footprints using 
the scaled parameterization of PBL height.  Using Eqs. (7) and (8), the estimated transport 
error 

TransPBL
S  at day time due to PBL uncertainties of 196 m is about 17 ppb, or about 22% of 

the mean signal. Assuming the transport errors due to winds and PBL height are independent, 
the total transport error 

Trans
S  is 23%. 

 

Figure 14. Comparison of daytime PBL heights between radar profiler 
measurements and WRF-STILT simulations in October through 
December 2007.  Also shown are lines for a 1:1 relationship (grey) 
and the best-fit (black) from a geometric linear regression.  
 
Footprints for Measurement Sites 
The time-averaged footprint is shown in Figure 15 for the period between October and 
December in 2007. The high footprint values within approximately the Central California area 
near the tower site indicate that CH4 signals measured at 91 m at WGC will be strongly 
influenced by the CH4 emissions over Central California area. The low values in other areas 
indicate the low sensitivity of WGC tower measurements to the surface CH4 emissions in those 
areas. In the following study, the authors show the inversion results based on WGC site 
measurements, which will have a high reliability for central California area. In order to obtain 



accurate inverse of CH4 emissions over the whole CA, a net of stations is proposed by the 
authors at the end of this report. 

 

Figure 15. Average footprint for CH4 mixing ratio measurements made 
at 91 m on the Walnut Grove tower for the period from October 
through December 2007.  
 
Linear Regression Analysis of Predicted and Measured CH4 Signals 



The predicted WRF-STILT CH4 mixing ratio signals obtained for the period of October through 
December 2007, shown in Figure 16, agree qualitatively with the tower measurements. As 
described in sections 3.2.1 and Figure 10, data are selected to only include times with well-
mixed conditions and when background CH4 can be reliably, which are shown as black points 
in Figure 16. Diurnal cycles due to changing boundary layer height and synoptic variations due 
to frontal passages are apparent in the data. The measured and predicted CH4 mixing ratios 
show similar temporal variations, indicating partial success of the model. However, the 
predicted signals do not always capture the large CH4 measurements, indicating some 
combination of errors in the a priori emission model (e.g., spatial pattern or limited resolution) 
and atmospheric transport (e.g, wind fields, boundary layer height). A quantitative comparison 
of measured and predicted CH4 signals from the 91 m sampling height at WGC is shown for the 
October through December 2007 period in Figure 17. Without Zi scaling (Figure 17a), the best-fit 
slope between predicted and measured CH4 mixing ratios is 0.46 ± 0.07. After applying the Zi 
scaling to WRF-STILT (Figure 17b), the slope between predicted and measured CH4 is 0.73 ± 
0.11. The change in slope between Figure 17a and Figure 17b demonstrates that scaling the PBL 
heights affects the predicted CH4 signals, and any residual uncertainty in PBL height should be 
considered as a source of uncertainty in the Bayesian analyses that follow.  After the Zi scaling, 
the slope obtained in Figure 17b suggests that the actual emissions are higher than inventory 
estimates by a factor of 1.37 ± 0.21.  The authors note that the normalized Chi-square value for 
Figure 17b is 1.17, suggesting that the estimated errors do not completely explain the residual 
variance in the differences between the predictions and measurements. CH4 signals based on 
Edgar 3.2 emissions are also simulated and compared with the tower measurements in Figure 
17c, yielding a slope of 1.09 ± 0.14.  This slope is roughly consistent (p > 0.1 in a t test) with 
the slope (0.92 ± 0.03) obtained by Kort et al. (2008) in their comparison of measured and 
predicted CH4 signals using Edgar 3.2. However, the slopes obtained with the California 
specific (Figure 17b) and Edgar (Figure 17c) emissions are significantly different (p < 0.01), as 
might be expected given the large difference in the a priori emissions shown in Table 1. For the 
central California region, the total emission estimated by Edgar 3.2 is about 75% more than that 
estimated from California specific sources, which is roughly consistent with the difference (~ 
50%) of fitting slopes between Figure 17b and Figure 17c. 

 To evaluate the effect of the well-mixed data selection criteria, the authors also examined the 
slopes obtained with a more stringent requirement that the difference between CH4 mixing ratio 
measured at 91 m and 483 m is less than 50 ppb.  This subset of data are shown as triangles in 
Figure 17. Using the selection criteria of 50 ppb in Figure 17b, the authors obtain a slope of 0.86 
± 0.17, which is quite consistent with that obtained using the selection criteria of 100 ppb.  The 
following analyses include data based on the 100 ppb selection criteria.  



 

Figure 16. Background subtracted CH4 measurements (black line) and 
predictions (red line) from 91 m as a function of time (top), and their 
difference (bottom) for well mixed conditions (black points). 
 



 

Figure 17. Predicted versus measured CH4 obtained (a) using 
California specific emissions without Zi correction, (b) with Zi 
correction, and (c) using Edgar 3.2 emissions with Zi correction. The 
symbols indicate well-mixed periods when the difference between 
CH4 mixing ratios measured at 91 and 483 m are less than 100 ppb 
(open circles) and less than 50 ppb (triangles), respectively.  
 
3.3.3. Baysian Inverse Estimates of CH4 Emissions 
Error Covariance Matrix 
Using the WRF simulated meteorology in October 2007 and the total a priori emission map, the 
CH4 mixing ratios at WGC site are simulated for a release of 1000 particles and a release of 100 
particles. The authors found that the standard error between these two simulations is about 3 
ppb, indicating ~ 5% particle number error partS . This value is less than ~13% particle number 
error for CO2 indicated by Gerbig et al. (2003a). Considering the ~ 5% error determined by us 



here and ~13% error determined by Gerbig et al., for signals in the mixed-layer, partS  for 100 
particles is assumed as 10% in this study. For all of the following error analyses, the authors 
used 1000 particles in order to minimize the effect of particle number error. As the authors have 
indicated, aggrS  is estimated by comparing the un-aggregated landfill signal from to the landfill 
signal estimated after averaging emissions over each county ,  which is about 11%. Transport 
error 

TransPBLTransWNDTrans
SSS +=  has been determined as 23% and the CH4 background error 

(
bkgd
S ) has been determined as 15% in section 3.3.2.  As the authors have indicated, eddyS  is 

assumed as 1%, and 
emis
S  and 

ocean
S  are assumed to be negligible.  

With the assumption of independence for different error sources, the total equivalent 
“measurement” error is assumed to be 32% of each individual background-subtracted 
measurement. 

Source Sector Analysis 
The Bayesian “source” inverse analysis was carried out for the six source sectors for October 
through December 2007. As shown in Figure 18 (a), the a posteriori scaling factors for the crop 
agriculture (CP), landfill (LF), wetland (WL), petroleum (PL), and natural gas (NG) are not 
significantly different from unity (at 95 % confidence). The scaling factor for livestock is 1.63 ± 
0.22, suggesting the emissions from livestock are significantly (95% confidence) larger than the a 
priori inventory estimates. Considering that the linear regression (Figure 17b) estimates suggest 
that CH4 emissions from Central California are estimated to be 37 ± 21 % higher than the 
annually averaged California specific a priori inventories, the increase in overall emissions is 
largely due to the 63 ± 22 (1 σ) % increase in estimated emissions from livestock. State-wide a 
priori livestock emission are 9.7 MMT CO2eq (see Table 1), which includes 5.6 MMT CO2eq from 
dairies and 4.1 MMT CO2eq from other cattle. Scaling the a priori CH4 emissions from dairies 
suggests that actual dairy emissions are 9.1 ± 1.3 MMT CO2eq. This result is nominally 
consistent with or slightly less than the results of a recent study by Salas et al. (2008), which 
estimated total CH4 emissions from dairies in CA to be approximately 9.8 MMT CO2eq. Except 
for the livestock emission source, some other sources also showed smaller differences from 
inventory estimates. For example, inferred CH4 emissions from crop agriculture are smaller than 
the annually averaged inventory, consistent to the expectation of higher CH4 emissions from the 
north-central Valley during the summer due to flooded rice agriculture (Salas et al., 2006).   



 

Figure 18.  Inversion estimates for the “source” sector analysis (a) 
and “region” analysis (b).  A priori and posterior scaling factors for 
the six source sectors and 13 source regions are shown with 
corresponding 68% confidence level uncertainties.  
 
Region Specific Analysis 
The Bayesian “region” inverse analysis of emissions from the 13 California regions is shown in 
Figure 18(b).  The a posteriori uncertainties are noticeably reduced relative to the a priori 
uncertainties only for regions 6, 7, and 8, which have a strong influence on the CH4 
measurements either because the land surrounds the tower site (regions 6 and 8) or has a tele-
connection through the prevailing wind (region 7).  The a posteriori scaling factor for region 6 is 
1.08 ± 0.06, indicating that the posterior emissions agree well with the a priori inventory 
estimates.  Posterior scaling factors for region 7 and 8 are 1.55 ± 0.17 and 1.37 ± 0.15 
respectively, indicating that the a posteriori emissions are greater than the a priori estimates for 



these two regions.The authors also note that the region analysis is consistent with the source 
sector analysis in that increased emissions from region 8 are consistent increased emissions from 
livestock. 

Finally, the authors report the results of a sensitivity test in Section 6. The a priori uncertainties 
were varied from 30% to 50% to investigate the effect that loosening the a priori constraint on 
emissions had on the inverse model results.  The results of this test show that increasing the a 
priori uncertainties will allow posterior results to be more strongly driven by measurements that 
have a high overlap of footprint function with the spatial distribution of the emission source. In 
this study, the sensitivity is about 5-15% for different sources and 1-3% for regions near WGC 
site. 

Performance of Scaling Factors from Bayesian Inverse 
After applying the scaling factors obtained from Bayesian analyses, the posterior predicted 
CH4 mixing ratios are compared with measurements in Figure 19. Figure 19a shows the 
comparison for results from the ‘source analysis’ with measurements. Compared to Figure 17b 
(before inverse optimization), the fitting slope is closer to unity, and the normalized Chi-square 
value is slightly reduced from 1.17 to 1.11.  This suggests that the inverse optimization has 
slightly improved the agreement between the measured and predicted CH4 signals but that on 
order 10% of the variance remains unexplained.  It is possible that the apparent 
underestimation of the errors may be due to positive correlation between the error sources that 
the authors assumed independent.  Similar results are obtained for the region analysis, as 
shown in Figure 19b. In both cases, the slopes after optimization are still slightly less than unity, 
likely because of the weight on the a priori scaling factors.  The authors note that relaxing the a 
priori uncertainties on the scaling factors from 30% to 50%, allows the optimization to adjust 
the posterior scaling factors further from their a priori values (Section 6). 

 

Figure 19. Comparison of CH4 mixing ratios between measurements 
and predictions modified using posterior scaling factors obtained 
from the “source” analysis (a) and “region” analysis (b). 



3.4. Design of a Future Observation Network 
The above region analysis shows that emissions from regions 6, 7 and 8 are constrained by the 
91 m measurements at WGC.  This is because they either surround the tower (i.e., regions 6 and 
8) or have a strong influence on air reaching the tower through prevailing winds from the Bay 
Area to the Sacramento Valley (i.e., region 7). This observation provides an insight into the 
spatial domain that can be effectively investigated with the tower measurements and suggests 
that a network of towers would be required to accurately constrain the multiple regions and air 
basins in California.  In principle, measurements from multiple towers would also be combined 
in a larger inverse analysis to provide more stringent constraints on emissions from regions that 
influence several towers.  

3.4.1. Use of multiple measurement stations 
Error! Reference source not found.Figure 20 shows the mean maps of footprints for 7 stations 
in Oct 2007 and Jul 2008, representing fall and summer seasons. With these 7 stations, the 
measurements are sensitive to the surface CH4 emissions for most California areas except part 
areas in region 1 and 10, where the CH4 inventory emissions are very small (see Figure 2Error! 
Reference source not found.).  

 

Figure 20.  The monthly mean footprint maps for 7 observation 
stations simulated for Oct 2007 (left) and Jul 2008 (right).  
 
To evaluate the constraint of measurements from current stations and proposed stations to the 
inverse of California’s CH4 emissions, the authors first examined four ideal inverse tests using 
varied amounts of pseudo-data to retrieve emissions for the “source analysis” and “region 
analysis” described above. In both cases, the inverse results were calculated using pseudo-data 
computed for four cases in October 2007, and July 2008;, which are cases with 3 hour resolution 
WGC data, 3 hour resolution WGC and 12 hour resolution STR data, 12 hour resolution data 
from all 7 stations, and 3 hour resolution data from all 7 stations. The results of all analyses are 
provided in Appendix 6.2. Here the authors summarize the results from modeling with all 3 



hour resolution data from 7 stations in Error! Reference source not found. Figure 21 and Figure 
22Error! Reference source not found.. Because the different sources and regions have very 
different emissions levels, the results are re-plotted to show the CO2 equivalent emissions of 
CH4 (rather than scaling factors). Generally, all source regions and source sectors are estimated 
with significant reduction in uncertainty, with the exception of regions 1, 2, 3, and 13. 

 

 

Figure 21. Inverse model estimates of total CH4 emissions for 13 
regions in California obtained for October 2007 (top) and July 2008 
(bottom), based on the analysis of 3 hour resolution pseudo-data 
from 7 stations. Units are MMTCO2 equivalent. 

 



 

 

Figure 22. The inverse results of source analysis for CH4 emissions 
from different sources in October 2007 (top) and July 2008 (bottom), 
based on the analysis of 3 hour pseudo-data from 7 stations. Units 
are MMTCO2 equivalent.  
 
3.4.2. Use of Radiocarbon Methane (14CH4) to Identify Fossil CH4 Emissions 
The predicted radiocarbon content of atmospheric CH4 vary diurnally, synoptically, and 
monthly, but produce time averaged signals that are measurable, provided that large (~ 100 
liter) air samples can be collected and purified. As shown in Figure 23Error! Reference source 
not found., the monthly-mean midday 14CH4 at 91 m across the state indicates that the largest 
depletions (corresponding to the largest fossil fuel inputs) occurred near San Francisco, 
Sacramento, and Los Angeles. The extent to which the CH4 sources in these regions affected the 
larger-scale CH4 radiocarbon content varied over the year as atmospheric mixing and source 
strength varied. For example, the radiocarbon content in the Los Angeles air basin in January 
was elevated 15-20‰ compared to the other three months simulated. There was also a large 
depleted plume moving out over the Pacific towards the south from the SF Bay region in January 



that was not present in the other months simulated. This plume was likely caused by strong 
offshore winds in the region, which can be strong during the winter.  

 

Figure 23. Predicted monthly mean daytime 14CH4 signals (per mil) 
from fossil and biogenic CH4 emissions in California.  
 

4.0 Recommendations 

4.1. Refinement of Atmospheric Transport Model 
The results of this work highlight the need for careful estimation and minimization of errors in 
the transport model. The comparison between the radar profiler measurements and WRF-STILT 
predictions of PBL height show a systematic overestimation in the WRF-STILT predictions, 
while the sensitivity test shows that predicted CH4 emission estimates are sensitive to PBL 
height.  The error in WRF-STILT predictions of PBL height may be a result of imperfect land 
surface parameterization in WRF that does not account for a suppression of PBL height in the 
Central Valley. Possible causes for overestimation of PBL height include the Pacific low over 
California’s interior and low ratios of sensible to latent heat (Bowen ratios) driven by 



agricultural irrigation as shown in recent model studies of California (Kueppers et al., 2008; 
Lobel and Bonfils, 2008). Because of the limited amount of PBL height data, the present work 
should be considered a first step toward a more comprehensive analysis employing profiler 
data from additional profiler sites and over longer periods. Other trace gases are also likely to 
provide important constraints on boundary layer mixing and their use should be explored. For 
example, sufficiently detailed inventories for reasonably long-lived criteria pollutants (e.g., CO) 
may allow effective testing of the transport model.  Similarly, although the absolute fluxes may 
of 222Rn fluxes are poorly known, as long as the diurnal variations in average flux are reasonably 
small, radon may provide a constraint in errors in modeling nighttime boundary layer heights. 
The authors expect that some combination of these efforts will substantially improve the 
fidelity of the WRF-STILT PBL predictions and hence accuracy of GHG emission inversions. 

4.2. Long-term Measurements for Trend Detection 
The first year of data from the observations at Walnut Grove and Sutro towers and the inverse 
modeling described above, provide a starting point for analyzing the magnitude of Central 
California’s GHG emissions.  Because emissions of GHGs from both natural and biogeochemical 
and anthropogenic processes depend on other time-varying drivers (e.g., climate, the economy, 
and human management), it is reasonable to expect that emissions will change from over 
multiple time scales from seasons to years to decades. Hence, efforts to control annual GHG 
emissions to within a target based on some reference point in time need to include a quantitative 
measure of both the trends and inter-annual variations in emissions.  This will require that GHG 
emissions need to be measured over multiple years.  

4.3. N2O and Halocarbon Measurements 
Recent revisions to California’s GHG emission inventory, suggest that N2O emissions constitute 
the second largest contribution to global warming after CO2 (Bemis, 2006), slightly greater than 
that from CH4.  However, like CH4, the inventory estimates of N2O emissions are highly 
uncertain (Farrell et al., 2004).  To address the gap in verified regional N2O emissions estimates, 
the authors expect estimates of N2O emissions from Central California (and other regions) 
could be achieved by applying a combination of continued flask measurements using a 
combination of the radon mixing model and the inverse model approaches applied to CH4 
above in this report. However, further analysis of the N2O flask measurements is needed to 
determine whether the relatively infrequent (12 hour) measurements are sufficient for the inverse 
model analysis or whether continuous N2O measurements (as performed for CH4 at WGC) are 
necessary.  In addition to the measurements, the authors also note that bottom up modeling 
studies of N2O emissions from all source sectors (e.g., agriculture, waste water, and biomass 
and fossil fuel combustion) should be improved to provide a priori information for the inverse 
modeling. 

Although likely currently smaller than CH4 and N2O emissions on CO2 equivalent scale, 
halocarbon emissions are expected to increase over time, becoming a large fraction of 
California’s non-CO2 GHG budget.  Given the initial results from this study, measurement of 
halocarbon mixing ratios at tower sites in California may offer the same potential for inverse 
model analysis as CH4, N2O.  As above, there is a question of how frequently measurements 
need to be taken in order to provide a sufficiently precise estimate of emissions.  However, 
given the very limited information currently available for most halocarbon species, even 12 



hourly flask sampling may provide sufficient data.  As with N2O, bottom up estimates of 
spatially resolved halocarbon emissions will be valuable for any inverse modeling efforts. 

 

  

4.4. Stable Isotopic CH4 Measurements 
Identifying which source sectors are actually responsible for the emissions in a given region (and 
which sectors are responsible for future reductions or increases) will be critical for determining 
the success of GHG emission control strategies being contemplated by California. Generally, 
multiple source sectors contribute to the emissions of nearly all GHGs at the regional scale in 
California.  As shown above, inventory estimates of CH4 emissions suggest significant emissions 
from landfills, livestock, natural gas transmission and use, and petroleum facilities and use. 
Hence, research is needed to investigate techniques that can separate the relative contributions 
of GHG emissions from different source sectors.  One promising avenue is the measurement and 
analysis of additional atmospheric trace gas species. In particular, stable (and radiocarbon) 
isotopes 13CO2 (Pataki et al., 2007) and 14CO2 (Turnbull et al., 2007) have been used effectively 
for this purpose in contemporary studies, while 13CH4 and CHD have been used in studies of 
global paleoclimate (Whiticar and Schaefer, 2007). Efforts to measure the stable isotopic 
signatures near individual sources as well in atmospheric samples collected at towers is hence 
likely to provide additional constraints on GHG emission sources in California. 

4.5. Radiocarbon CH4 Measurements 
Although preliminary, the results 14CH4 content in the atmosphere indicate that radiocarbon 
measurements are sensitive markers of fossil fuel sources of CH4 emission. Further work must be 
done to better constrain the 14C content of non-fossil sources (e.g., wetlands, agriculture) to 
improve the simple values applied here.  With this information, atmospheric 14CH4 mixing ratio 
predictions could be applied in an inverse approach, similar to that described above for CH4, to 
estimate the sensitivity of estimated emission fields to changes in diurnal, synoptic, monthly, 
and seasonal time frames. This sensitivity analysis will allow the design of a rational sampling 
strategy to best take advantage of the unique value of radiocarbon as a tracer of fossil CH4 
emissions.  

4.6. Statewide Measurement Network and Other Platforms 
Data from additional measurements locations will be necessary to broaden the spatial scale 
over which the inverse models can be applied to constrain the total GHG emissions from 
California.  These should include tower measurements as explored in Section 3.4 above. 
However, given the difficulty of obtaining access to towers in desirable locations, the authors 
emphasize that site selection will likely require considerable effort to find candidate towers, 
model the footprints   

In addition to the towers, intensives with aircraft, and remote sensing from space provide 
additional important data. For example, the California Air Resources Board and NASA 
conducted joint observations (ARCTAS-CA) of air quality and GHG species over California in 
June, 2008.  In winter 2009, the NASA Orbiting Carbon Observatory (OCO) and the Japanese 



Space Agency Greenhouse Gas Observing Satellite (GOSAT) are expected for launch.  Both 
satellites will provide column integrated CO2 measurements, but GOSAT, in particular, will 
provide column integrated CH4 which might be used in combination with other measurements to 
improve estimates of California’s CH4 budget.  Finally, future campaigns to study air quality 
and climate such as the joint CEC-CARB-NOAA CALNEX 2010 campaign will provide 
intensive measurements over approximately month-long time scales that will likely be useful for 
process-based studies. 
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6.0 Appendices 

6.1. Sensitivity Test for the a priori CH4 Emission Uncertainty 
In this study, the authors assumed the a priori uncertainty in the inventory CH4 emissions of 
30% based on previous work. To evaluate the effect of varying the assumed a priori uncertainty 
on the posterior emission estimates and uncertainties, the authors conducted a sensitivity test by 
comparing the inverse model results using a priori uncertainties of 30% and 50%. Generally 
speaking, increasing the a priori uncertainties will allow posterior results to be more strongly 
driven by measurements that have a high overlap of footprint function with the spatial 
distribution of the emission source. In the case of the source sector analysis shown in Figure 
24Error! Reference source not found., using the WGC measurements, the scaling factors for 
sources sectors were different from unity were allowed to move even further from unity when a 
priori uncertainty was relaxed. For example, Table 3 lists the sensitivity of retrieved emissions 
(scaling factors) to the a priori uncertainties for source or regions with relatively big reductions 
in uncertainties. 

 

Figure 24. Sensitivity test of the source sector analysis to increasing 
the a priori emission uncertainties from 30% to 50%.  
 

CH4 WL LF LS NG PL DNDC R06 R07 R08 

Sensitivity 16% 8% 12% 15% 7% 6% 1% 1% 3% 

Table 3. The sensitivity of retrieved emissions (scaling factors) to the 
a priori uncertainties for 6 sources or 3 regions. 
 



6.2. The Effects of Multiple Stations for Source Sector Analysis. 
The appendix shows the varied results for inverse modeling of CH4 emissions by adding 
measurements from more stations.  Four cases were run for both the region and source analysis: 
3 hour pseudo-data for WGC, 3 hour pseudo-data for WGC and 12 hour pseudo-data for STR 
site, and 3 and 12 hour pseudo-data from 7 stations respectively. The results for these cases are 
shown in Figure 25 through Figure 32. In general uncertainties in a posterior emissions are reduced 
for all sources as the number of stations and frequency of observations increase.  

As expected, uncertainties decrease with the frequency of sampling and very strongly with the 
addition of stations covering additional regions. For example, the results using the WGC site 
only or WGC and STR sites obtain increased accuracy in estimating emissions for region 6, 7 
and 8. Using all 7 stations, accurate posterior emissions are obtained for almost all regions 
except regions 1, 2, 3 and 13. The authors note that the inventory CH4 emissions from regions 1, 
2, 3, and 13 are significantly smaller than for most of the other regions. 

As observed for the source sector analysis using actual WGC measurements, there are 
significant reductions in the uncertainties for the LF, LS, NG and PL sources when using data 
from the WGC site alone, while WL and DNDC were not as effectively constrained. In addition, 
the WL and DNDC sources are significantly better constrained using 3 hour pseudo-data for 7 
sites, where the authors expect the principle leverage will be obtained from the additional sites 
in the Central Valley. 



 

 

Figure 25. Inverse results of region analysis for (a) October 2007 and 
(b) July 2008, using 3 hour resolution pseudo-data for the WGC site. 



 

 

Figure 26. Inverse results of region analysis for (a) October 2007 and 
(b) July 2008, using 3 hour resolution pseudo-data for the WGC site 
and 12 hour pseudo-data for the STR site. 



 

 

Figure 27. Inverse results of region analysis for (a) October 2007 and 
(b) July 2008, using 12 hour resolution pseudo-data for all 7 stations. 
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Figure 28.  Inverse results of region analysis for (a) October 2007 and 
(b) July 2008, using 3 hour resolution pseudo-data for all 7 stations. 
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b) 



 

 

Figure 29. The inverse results of source sector analysis for October 
2007 (top) and July 2008 (bottom) using 3 hour pseudo-data from the 
WGC site.  



 

 

Figure 30. The inverse results of source sector analysis for October 
2007 (top) and July 2008 (bottom) using 3 hour resolution pseudo-
data for the WGC site and 12 hour pseudo-data for the STR site. 
 



 

Figure 31. The inverse results of source sector analysis for October 
2007 (top) and July 2008 (bottom) using 12 hour resolution pseudo-
data for all 7 stations. 
 



 

Figure 32. The inverse results of source sector analysis for October 
2007 (top) and July 2008 (bottom) using 3 hour resolution pseudo-
data for all 7 stations. 


